Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

نویسندگان

  • H. Chen School of Mathematics and Statistics‎, ‎Central South University‎, ‎Changsha‎, ‎410083 Hunan‎, ‎P‎. ‎R‎. ‎China.
  • H. Shi School of Mathematics and Statistics‎, ‎Central South University‎, ‎Changsha‎, ‎410083 Hunan‎, ‎P‎. ‎R‎. ‎China.
چکیده مقاله:

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive solutions for Kirchhoff-type equations with a nonlinearity in the critical growth under some suitable assumptions on $V(x)$ and $f(x,u)$‎. ‎Recent results from the literature are improved and extended.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

positive solutions for asymptotically periodic kirchhoff-type equations with critical growth

in this paper‎, ‎we consider the following kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{r}^{3}}|nabla u|^{2}right)delta u+v(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$uin h^{1}(mathbb{r}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎the aim of this paper is to study the existence of positive ...

متن کامل

Variational Methods and Periodic Solutions of Kirchhoff-type Equations. Ii

In a previous paper [1], the author and Shmel’tser started the construction of an extended Lyusternik–Shnirelman–Morse theory for the study of single-valued and multivalued functionals on the space Ω̂(M) of losed directed curves in a manifold M. The authors applied these methods to the classical problem (Kirchhoffs problem) about the free motion of a rigid body in an ideal incompressible liquid,...

متن کامل

Periodic solutions of forced Kirchhoff equations

We consider Kirchhoff equations for vibrating strings and elastic membranes under the action of an external forcing of period 2π/ω and small amplitude ε. We prove existence, regularity and local uniqueness of 2π/ω-periodic solutions of order ε by means of a Nash-Moser iteration scheme; the results hold for parameters (ω, ε) in a Cantor-like set which has asymptotically full measure for ε→ 0.

متن کامل

S-asymptotically Ω-periodic Solutions for Semilinear Volterra Equations

We study S-asymptotically ω-periodic mild solutions of the semilinear Volterra equation u′(t) = (a ∗ Au)(t) + f(t, u(t)), considered in a Banach space X, where A is the generator of an (exponentially) stable resolvent family. In particular, we extend recent results for semilinear fractional integro-differential equations considered in [4] and for semilinear Cauchy problems of first order given ...

متن کامل

Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior

Existence and bifurcation of positive solutions to a Kirchhoff type equation ⎧⎪⎨ ⎪⎩ − ( a + b ∫ Ω |∇u|2 ) u= νf (x,u), in Ω, u= 0, on ∂Ω are considered by using topological degree argument and variational method. Here f is a continuous function which is asymptotically linear at zero and is asymptotically 3-linear at infinity. The new results fill in a gap of recent research about the Kirchhoff ...

متن کامل

Existence and multiplicity of positive solutions for a class of p(x)-Kirchhoff type equations

* Correspondence: [email protected] Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China Abstract In this article, we study the existence and multiplicity of positive solutions for the Neumann boundary value problems involving the p(x)-Kirchhoff of the form ⎪⎨⎪⎩ −M (∫ 1 p(x) (|∇u|p(x) + λ|u|p(x))dx ) (div (|∇u|p(x)−2∇u) − λ|u|p(x)−2u) = f (x, u) in , ∂u ∂v = 0...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 1

صفحات  147- 161

تاریخ انتشار 2017-02-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023